\(\int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx\) [1231]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 131 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\frac {2 b \csc (c+d x)}{a^3 d}-\frac {\csc ^2(c+d x)}{2 a^2 d}-\frac {\left (2 a^2-3 b^2\right ) \log (\sin (c+d x))}{a^4 d}+\frac {\left (a^4+2 a^2 b^2-3 b^4\right ) \log (a+b \sin (c+d x))}{a^4 b^2 d}+\frac {\left (a^2-b^2\right )^2}{a^3 b^2 d (a+b \sin (c+d x))} \]

[Out]

2*b*csc(d*x+c)/a^3/d-1/2*csc(d*x+c)^2/a^2/d-(2*a^2-3*b^2)*ln(sin(d*x+c))/a^4/d+(a^4+2*a^2*b^2-3*b^4)*ln(a+b*si
n(d*x+c))/a^4/b^2/d+(a^2-b^2)^2/a^3/b^2/d/(a+b*sin(d*x+c))

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2916, 12, 908} \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\frac {2 b \csc (c+d x)}{a^3 d}-\frac {\csc ^2(c+d x)}{2 a^2 d}-\frac {\left (2 a^2-3 b^2\right ) \log (\sin (c+d x))}{a^4 d}+\frac {\left (a^4+2 a^2 b^2-3 b^4\right ) \log (a+b \sin (c+d x))}{a^4 b^2 d}+\frac {\left (a^2-b^2\right )^2}{a^3 b^2 d (a+b \sin (c+d x))} \]

[In]

Int[(Cos[c + d*x]^2*Cot[c + d*x]^3)/(a + b*Sin[c + d*x])^2,x]

[Out]

(2*b*Csc[c + d*x])/(a^3*d) - Csc[c + d*x]^2/(2*a^2*d) - ((2*a^2 - 3*b^2)*Log[Sin[c + d*x]])/(a^4*d) + ((a^4 +
2*a^2*b^2 - 3*b^4)*Log[a + b*Sin[c + d*x]])/(a^4*b^2*d) + (a^2 - b^2)^2/(a^3*b^2*d*(a + b*Sin[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 908

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && IntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rule 2916

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x
, b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {b^3 \left (b^2-x^2\right )^2}{x^3 (a+x)^2} \, dx,x,b \sin (c+d x)\right )}{b^5 d} \\ & = \frac {\text {Subst}\left (\int \frac {\left (b^2-x^2\right )^2}{x^3 (a+x)^2} \, dx,x,b \sin (c+d x)\right )}{b^2 d} \\ & = \frac {\text {Subst}\left (\int \left (\frac {b^4}{a^2 x^3}-\frac {2 b^4}{a^3 x^2}+\frac {-2 a^2 b^2+3 b^4}{a^4 x}-\frac {\left (a^2-b^2\right )^2}{a^3 (a+x)^2}+\frac {a^4+2 a^2 b^2-3 b^4}{a^4 (a+x)}\right ) \, dx,x,b \sin (c+d x)\right )}{b^2 d} \\ & = \frac {2 b \csc (c+d x)}{a^3 d}-\frac {\csc ^2(c+d x)}{2 a^2 d}-\frac {\left (2 a^2-3 b^2\right ) \log (\sin (c+d x))}{a^4 d}+\frac {\left (a^4+2 a^2 b^2-3 b^4\right ) \log (a+b \sin (c+d x))}{a^4 b^2 d}+\frac {\left (a^2-b^2\right )^2}{a^3 b^2 d (a+b \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.89 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\frac {4 a b \csc (c+d x)-a^2 \csc ^2(c+d x)-2 \left (2 a^2-3 b^2\right ) \log (\sin (c+d x))+\frac {2 \left (a^4+2 a^2 b^2-3 b^4\right ) \log (a+b \sin (c+d x))}{b^2}+\frac {2 a \left (a^2-b^2\right )^2}{b^2 (a+b \sin (c+d x))}}{2 a^4 d} \]

[In]

Integrate[(Cos[c + d*x]^2*Cot[c + d*x]^3)/(a + b*Sin[c + d*x])^2,x]

[Out]

(4*a*b*Csc[c + d*x] - a^2*Csc[c + d*x]^2 - 2*(2*a^2 - 3*b^2)*Log[Sin[c + d*x]] + (2*(a^4 + 2*a^2*b^2 - 3*b^4)*
Log[a + b*Sin[c + d*x]])/b^2 + (2*a*(a^2 - b^2)^2)/(b^2*(a + b*Sin[c + d*x])))/(2*a^4*d)

Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.98

method result size
derivativedivides \(\frac {-\frac {-a^{4}+2 a^{2} b^{2}-b^{4}}{a^{3} b^{2} \left (a +b \sin \left (d x +c \right )\right )}+\frac {\left (a^{4}+2 a^{2} b^{2}-3 b^{4}\right ) \ln \left (a +b \sin \left (d x +c \right )\right )}{a^{4} b^{2}}-\frac {1}{2 a^{2} \sin \left (d x +c \right )^{2}}+\frac {\left (-2 a^{2}+3 b^{2}\right ) \ln \left (\sin \left (d x +c \right )\right )}{a^{4}}+\frac {2 b}{a^{3} \sin \left (d x +c \right )}}{d}\) \(129\)
default \(\frac {-\frac {-a^{4}+2 a^{2} b^{2}-b^{4}}{a^{3} b^{2} \left (a +b \sin \left (d x +c \right )\right )}+\frac {\left (a^{4}+2 a^{2} b^{2}-3 b^{4}\right ) \ln \left (a +b \sin \left (d x +c \right )\right )}{a^{4} b^{2}}-\frac {1}{2 a^{2} \sin \left (d x +c \right )^{2}}+\frac {\left (-2 a^{2}+3 b^{2}\right ) \ln \left (\sin \left (d x +c \right )\right )}{a^{4}}+\frac {2 b}{a^{3} \sin \left (d x +c \right )}}{d}\) \(129\)
parallelrisch \(\frac {\left (a -b \right ) \left (a +b \right ) \left (a^{2}+3 b^{2}\right ) \left (a +b \sin \left (d x +c \right )\right ) \ln \left (2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )-a^{4} \left (a +b \sin \left (d x +c \right )\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b^{2} \left (a^{2}-\frac {3 b^{2}}{2}\right ) \left (a +b \sin \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {b^{2} a^{2} \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+22\right ) \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {3 a \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{3} \left (3+\cos \left (2 d x +2 c \right )\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )}{16}+\frac {11 a^{2} b^{2} \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+a^{4}+3 b^{4}\right ) a}{a^{4} b^{2} d \left (a +b \sin \left (d x +c \right )\right )}\) \(237\)
norman \(\frac {-\frac {1}{8 a d}-\frac {\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}+\frac {5 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}+\frac {5 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}+\frac {3 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 a^{2} d}+\frac {3 b \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a^{2} d}-\frac {\left (4 a^{4}-15 a^{2} b^{2}+12 b^{4}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{4} b d}-\frac {\left (8 a^{4}-33 a^{2} b^{2}+24 b^{4}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a^{4} b d}-\frac {\left (8 a^{4}-33 a^{2} b^{2}+24 b^{4}\right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a^{4} b d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}+\frac {\left (a^{4}+2 a^{2} b^{2}-3 b^{4}\right ) \ln \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}{b^{2} a^{4} d}-\frac {\ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2} d}-\frac {\left (2 a^{2}-3 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{4} d}\) \(391\)
risch \(-\frac {i x}{b^{2}}-\frac {2 i c}{b^{2} d}+\frac {6 i a \,b^{3} {\mathrm e}^{4 i \left (d x +c \right )}+2 a^{4} {\mathrm e}^{5 i \left (d x +c \right )}-4 a^{2} b^{2} {\mathrm e}^{5 i \left (d x +c \right )}+6 b^{4} {\mathrm e}^{5 i \left (d x +c \right )}-6 i a \,b^{3} {\mathrm e}^{2 i \left (d x +c \right )}-4 a^{4} {\mathrm e}^{3 i \left (d x +c \right )}+12 a^{2} b^{2} {\mathrm e}^{3 i \left (d x +c \right )}-12 b^{4} {\mathrm e}^{3 i \left (d x +c \right )}+2 a^{4} {\mathrm e}^{i \left (d x +c \right )}-4 a^{2} b^{2} {\mathrm e}^{i \left (d x +c \right )}+6 b^{4} {\mathrm e}^{i \left (d x +c \right )}}{\left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2} b^{2} \left (-i b \,{\mathrm e}^{2 i \left (d x +c \right )}+i b +2 a \,{\mathrm e}^{i \left (d x +c \right )}\right ) a^{3} d}-\frac {2 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d \,a^{2}}+\frac {3 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) b^{2}}{a^{4} d}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1+\frac {2 i a \,{\mathrm e}^{i \left (d x +c \right )}}{b}\right )}{b^{2} d}+\frac {2 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1+\frac {2 i a \,{\mathrm e}^{i \left (d x +c \right )}}{b}\right )}{a^{2} d}-\frac {3 b^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1+\frac {2 i a \,{\mathrm e}^{i \left (d x +c \right )}}{b}\right )}{a^{4} d}\) \(394\)

[In]

int(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-(-a^4+2*a^2*b^2-b^4)/a^3/b^2/(a+b*sin(d*x+c))+(a^4+2*a^2*b^2-3*b^4)/a^4/b^2*ln(a+b*sin(d*x+c))-1/2/a^2/s
in(d*x+c)^2+(-2*a^2+3*b^2)/a^4*ln(sin(d*x+c))+2/a^3*b/sin(d*x+c))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 335 vs. \(2 (129) = 258\).

Time = 0.39 (sec) , antiderivative size = 335, normalized size of antiderivative = 2.56 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {3 \, a^{2} b^{3} \sin \left (d x + c\right ) + 2 \, a^{5} - 5 \, a^{3} b^{2} + 6 \, a b^{4} - 2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + 3 \, a b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{5} + 2 \, a^{3} b^{2} - 3 \, a b^{4} - {\left (a^{5} + 2 \, a^{3} b^{2} - 3 \, a b^{4}\right )} \cos \left (d x + c\right )^{2} + {\left (a^{4} b + 2 \, a^{2} b^{3} - 3 \, b^{5} - {\left (a^{4} b + 2 \, a^{2} b^{3} - 3 \, b^{5}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (b \sin \left (d x + c\right ) + a\right ) - 2 \, {\left (2 \, a^{3} b^{2} - 3 \, a b^{4} - {\left (2 \, a^{3} b^{2} - 3 \, a b^{4}\right )} \cos \left (d x + c\right )^{2} + {\left (2 \, a^{2} b^{3} - 3 \, b^{5} - {\left (2 \, a^{2} b^{3} - 3 \, b^{5}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \sin \left (d x + c\right )\right )}{2 \, {\left (a^{5} b^{2} d \cos \left (d x + c\right )^{2} - a^{5} b^{2} d + {\left (a^{4} b^{3} d \cos \left (d x + c\right )^{2} - a^{4} b^{3} d\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/2*(3*a^2*b^3*sin(d*x + c) + 2*a^5 - 5*a^3*b^2 + 6*a*b^4 - 2*(a^5 - 2*a^3*b^2 + 3*a*b^4)*cos(d*x + c)^2 + 2*
(a^5 + 2*a^3*b^2 - 3*a*b^4 - (a^5 + 2*a^3*b^2 - 3*a*b^4)*cos(d*x + c)^2 + (a^4*b + 2*a^2*b^3 - 3*b^5 - (a^4*b
+ 2*a^2*b^3 - 3*b^5)*cos(d*x + c)^2)*sin(d*x + c))*log(b*sin(d*x + c) + a) - 2*(2*a^3*b^2 - 3*a*b^4 - (2*a^3*b
^2 - 3*a*b^4)*cos(d*x + c)^2 + (2*a^2*b^3 - 3*b^5 - (2*a^2*b^3 - 3*b^5)*cos(d*x + c)^2)*sin(d*x + c))*log(-1/2
*sin(d*x + c)))/(a^5*b^2*d*cos(d*x + c)^2 - a^5*b^2*d + (a^4*b^3*d*cos(d*x + c)^2 - a^4*b^3*d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**3/(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.12 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\frac {\frac {3 \, a b^{3} \sin \left (d x + c\right ) - a^{2} b^{2} + 2 \, {\left (a^{4} - 2 \, a^{2} b^{2} + 3 \, b^{4}\right )} \sin \left (d x + c\right )^{2}}{a^{3} b^{3} \sin \left (d x + c\right )^{3} + a^{4} b^{2} \sin \left (d x + c\right )^{2}} - \frac {2 \, {\left (2 \, a^{2} - 3 \, b^{2}\right )} \log \left (\sin \left (d x + c\right )\right )}{a^{4}} + \frac {2 \, {\left (a^{4} + 2 \, a^{2} b^{2} - 3 \, b^{4}\right )} \log \left (b \sin \left (d x + c\right ) + a\right )}{a^{4} b^{2}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/2*((3*a*b^3*sin(d*x + c) - a^2*b^2 + 2*(a^4 - 2*a^2*b^2 + 3*b^4)*sin(d*x + c)^2)/(a^3*b^3*sin(d*x + c)^3 + a
^4*b^2*sin(d*x + c)^2) - 2*(2*a^2 - 3*b^2)*log(sin(d*x + c))/a^4 + 2*(a^4 + 2*a^2*b^2 - 3*b^4)*log(b*sin(d*x +
 c) + a)/(a^4*b^2))/d

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.45 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {\frac {2 \, {\left (2 \, a^{2} - 3 \, b^{2}\right )} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a^{4}} - \frac {2 \, {\left (a^{4} + 2 \, a^{2} b^{2} - 3 \, b^{4}\right )} \log \left ({\left | b \sin \left (d x + c\right ) + a \right |}\right )}{a^{4} b^{2}} + \frac {2 \, {\left (a^{4} \sin \left (d x + c\right ) + 2 \, a^{2} b^{2} \sin \left (d x + c\right ) - 3 \, b^{4} \sin \left (d x + c\right ) + 4 \, a^{3} b - 4 \, a b^{3}\right )}}{{\left (b \sin \left (d x + c\right ) + a\right )} a^{4} b} - \frac {6 \, a^{2} \sin \left (d x + c\right )^{2} - 9 \, b^{2} \sin \left (d x + c\right )^{2} + 4 \, a b \sin \left (d x + c\right ) - a^{2}}{a^{4} \sin \left (d x + c\right )^{2}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/2*(2*(2*a^2 - 3*b^2)*log(abs(sin(d*x + c)))/a^4 - 2*(a^4 + 2*a^2*b^2 - 3*b^4)*log(abs(b*sin(d*x + c) + a))/
(a^4*b^2) + 2*(a^4*sin(d*x + c) + 2*a^2*b^2*sin(d*x + c) - 3*b^4*sin(d*x + c) + 4*a^3*b - 4*a*b^3)/((b*sin(d*x
 + c) + a)*a^4*b) - (6*a^2*sin(d*x + c)^2 - 9*b^2*sin(d*x + c)^2 + 4*a*b*sin(d*x + c) - a^2)/(a^4*sin(d*x + c)
^2))/d

Mupad [B] (verification not implemented)

Time = 13.80 (sec) , antiderivative size = 280, normalized size of antiderivative = 2.14 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\frac {b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^3\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {a^2}{2}-8\,b^2\right )+\frac {a^2}{2}-3\,a\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (2\,a^4-5\,a^2\,b^2+2\,b^4\right )}{a\,b}}{d\,\left (4\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+8\,b\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\right )}-\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{b^2\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a^2\,d}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (2\,a^2-3\,b^2\right )}{a^4\,d}+\frac {\ln \left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )\,\left (a^4+2\,a^2\,b^2-3\,b^4\right )}{a^4\,b^2\,d} \]

[In]

int(cos(c + d*x)^5/(sin(c + d*x)^3*(a + b*sin(c + d*x))^2),x)

[Out]

(b*tan(c/2 + (d*x)/2))/(a^3*d) - (tan(c/2 + (d*x)/2)^2*(a^2/2 - 8*b^2) + a^2/2 - 3*a*b*tan(c/2 + (d*x)/2) + (4
*tan(c/2 + (d*x)/2)^3*(2*a^4 + 2*b^4 - 5*a^2*b^2))/(a*b))/(d*(4*a^4*tan(c/2 + (d*x)/2)^2 + 4*a^4*tan(c/2 + (d*
x)/2)^4 + 8*a^3*b*tan(c/2 + (d*x)/2)^3)) - log(tan(c/2 + (d*x)/2)^2 + 1)/(b^2*d) - tan(c/2 + (d*x)/2)^2/(8*a^2
*d) - (log(tan(c/2 + (d*x)/2))*(2*a^2 - 3*b^2))/(a^4*d) + (log(a + 2*b*tan(c/2 + (d*x)/2) + a*tan(c/2 + (d*x)/
2)^2)*(a^4 - 3*b^4 + 2*a^2*b^2))/(a^4*b^2*d)